4(b). Extensions of Completely Randomized Experiments

ISS5096 || ECI Jaewon ("Jay-one") Yoo National Tsing Hua University

Regression in Completely Randomized Experiment

- Regression with no covariates = standard Neyman analysis.
- Regression with (uninteracted) covariates:
 - Consistent for SATE/PATE.
 - · Usually will help with precision, but can hurt.
- · Regression with interacted covariates:
 - Consistent for SATE/PATE.
 - · Asymptotically will never hurt precision.
- Always use robust/HC2 variance estimators unless you have good reasons.

Regression for Stratified Experiments

- Setup: block randomized experiment with block indicators W_{ij} .
 - Block "fixed effects" $W_{ij} = 1$ if i is in block j, 0 otherwise.
 - Blocks $j \in \{1, ..., J\}$ with sizes $w_j = n_j/n$ and propensity scores $p_j = n_{1,j}/n_j$.
- Recall STAR Project: within each school (block), classes were randomized.
- Naive approach: just include the block FEs in OLS

$$(\widehat{\tau}_{b,\text{fe}},\widehat{\alpha}_1,\ldots,\widehat{\alpha}_J) = \underset{(\tau,\alpha_1,\ldots,\alpha_J)}{\operatorname{arg\,min}} \sum_{i=1}^n \left(Y_i - \tau D_i - \sum_{j=1}^J \alpha_j W_{ij} \right)^2$$

• $\hat{\tau}_{b,\text{fe}}$ not consistent for the PATE unless:

$$\widehat{\tau}_{b,\text{fe}} \xrightarrow{p} \frac{\sum_{j=1}^{J} \omega_j \tau_j}{\sum_{j=1}^{J} \omega_j}, \text{ where } \omega_j = w_j p_j (1 - p_j)$$

- Propensity scores are equal across blocks: $p_i = p$ for all j.
- ATEs are equal across strata $\tau_i = \tau$ for all j.

Block Randomized Trials: Correct Analysis

- 1. Just use original Neyman analysis aggregating within-strata analyses.
- 2. Weight OLS by inverse of the propensity score: $1/p_j$.
- 3. Fully interact block FEs with treatment.
 - Latter two allow for additional covariates to be added.
 - · Check Imbens and Rubin (2015) Ch.9.6.1., second model
- See this simulation study using DeclareDesign: https://declaredesign.org/blog/posts/biased-fixed-effects.html

Block Randomized Trials: Correct Analysis

2. Weight OLS by inverse of the propensity score.

$$(\widehat{\tau}_{b,\text{fe}},\widehat{\alpha}_1,\ldots,\widehat{\alpha}_J) = \underset{(\tau,\alpha_1,\ldots,\alpha_J)}{\arg\min} \sum_{j=1}^n s_i \left(Y_i - \tau D_i - \sum_{j=1}^J \alpha_j W_{ij} \right)^2$$
 where $s_i = \sum_{j=1}^J \left\{ \left(\frac{1}{\rho_j} \right) D_i + \left(\frac{1}{1-\rho_j} \right) (1-D_i) \right\} W_{ij}$ and $\rho_j = \frac{n_{1,j}}{n_j}$.

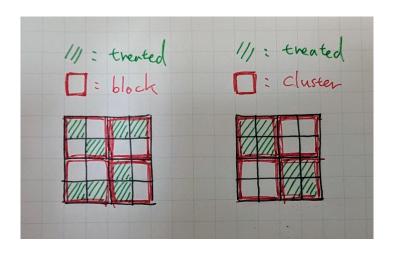
Cluster Randomized Trials

- Treatment often allocated at a higher level than the data.
 - Suppose schools are randomized and all the classes in the same school receive the same treatment.
 - · Now school is not a block, but a cluster!
 - · More examples:
 - States are treated, but we have firm-level data.
 - Platforms are treated, but we have user-level data.
- Setup:
 - Clusters: $k \in \{1, \dots, K\}$
 - Randomly choose K_1 treatment clusters, K_0 control.
 - Each cluster has units $i \in \{1, ..., m_k\}$ with $\sum_{k=1}^K m_k = n$
 - Treatment assignment at cluster level: $D_{ik} = D_k$
 - Potential outcomes $Y_{ik}(d)$
- · Cost of clustering
 - More similarity
 \infty each unit provides redundant information
 \infty less
 efficiency under clustering

Cluster Randomized Trials: Analysis

Use cluster-robust variance estimator:

- Cluster at the treatment assignment level (no higher or lower)!
- Vanilla CR variance estimator is biased, Bell & McCaffrey proposed CR2 adjustment similar to HC2 (usually preferable).
- · You may have block and cluster design at the same time.



Have a great weekend!

Contact Information: jaewon.yoo@iss.nthu.edu.tw https://j1yoo4.github.io/

