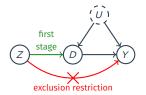
## 9. Two Stage Least Squares

ISS5096 || ECI Jaewon ("Jay-one") Yoo National Tsing Hua University

## Where are we? Where are we going?

- · Last time:
  - Instrumental variable under noncompliance in randomized experiments.
    - The local ATE (or CACE):  $\tau_{\text{LATE}} = \text{ITT}_{Y,\text{co}} = \frac{\text{ITT}_{Y}}{\text{ITT}_{D}}$
    - The Wald/IV estimator:  $\widehat{ au_{\text{IV}}} = \widehat{\text{ITT}}_Y/\widehat{\text{ITT}}_D$
    - Intent-to-treat analysis, compliance types, identification assumptions...



- · Today:
  - 1. Two stage least squares (TSLS)
  - 2. Types/Applications of IVs, e.g.,:
    - · Regional characteristics (e.g., cellphone signal strength for app adoption)
    - · Peer's environment (e.g., weather in friend's city for 'my' running behavior)



Source: Chapter 4 of Mostly Harmless Econometrics (Textbook 1) by J. Angrist & J. Pischke

1/ Basic Two-Stage Least Squares

## **Two Stage Least Squares**

• **Two-stage least squares** (TSLS) is the classical approach to IV which assumes two linear models:

$$Y_i = \alpha + \tau D_i + \varepsilon_i$$
$$D_i = \delta + \gamma Z_i + \eta_i$$

## **Two Stage Least Squares**

• **Two-stage least squares** (TSLS) is the classical approach to IV which assumes two linear models:

$$Y_i = \alpha + \tau D_i + \varepsilon_i$$
$$D_i = \delta + \gamma Z_i + \eta_i$$

- Here, the treatment  $D_i$  is **endogenous** so  $\mathbb{E}[\varepsilon_i|D_i] \neq 0$ .
- But we have an **instrument**  $Z_i$  that is exogenous  $\mathbb{E}[\varepsilon_i|Z_i] = 0$ .
  - It's also exogenous for treatment uptake, so  $\mathbb{E}[\eta_i|Z_i]=0$ .

## **Two Stage Least Squares**

• **Two-stage least squares** (TSLS) is the classical approach to IV which assumes two linear models:

$$Y_i = \alpha + \tau D_i + \varepsilon_i$$
$$D_i = \delta + \gamma Z_i + \eta_i$$

- Here, the treatment  $D_i$  is **endogenous** so  $\mathbb{E}[\varepsilon_i|D_i] \neq 0$ .
- But we have an **instrument**  $Z_i$  that is exogenous  $\mathbb{E}[\varepsilon_i|Z_i] = 0$ .
  - It's also exogenous for treatment uptake, so  $\mathbb{E}[\eta_i|Z_i]=0$ .
- This implies the following CEF form for  $Y_i$  conditional on  $Z_i$ :

$$\mathbb{E}[Y_i|Z_i] = \alpha + \tau \mathbb{E}[D_i|Z_i] = \alpha + \tau \cdot (\gamma Z_i)$$

#### **TSLS Estimands**

- Under the model, we have the following CEF:  $\mathbb{E}[Y_i|Z_i] = \alpha + \tau \cdot (\gamma Z_i)$ 
  - $\rightsquigarrow$  A regression of  $Y_i$  on  $\gamma Z_i$  would have  $\tau$  as the slope.

#### **TSLS Estimands**

- Under the model, we have the following CEF:  $\mathbb{E}[Y_i|Z_i] = \alpha + \tau \cdot (\gamma Z_i)$ 
  - $\rightsquigarrow$  A regression of  $Y_i$  on  $\gamma Z_i$  would have  $\tau$  as the slope.
- If the CEF is linear, then we have this simple relationship slopes:

$$\mathbb{E}[D_i|Z_i] = \delta + \gamma Z_i \qquad \rightsquigarrow \qquad \gamma = \frac{\text{cov}(D_i, Z_i)}{\mathbb{V}(Z_i)}$$

Applying this to above CEF, we have:

$$\tau = \frac{\mathsf{cov}(Y_i, \gamma Z_i)}{\mathbb{V}(\gamma Z_i)} = \frac{\mathsf{cov}(Y_i, Z_i)}{\gamma \mathbb{V}(Z_i)} = \frac{\mathsf{cov}(Y_i, Z_i)}{\mathsf{cov}(D_i, Z_i)}$$

#### **TSLS Estimands**

- Under the model, we have the following CEF:  $\mathbb{E}[Y_i|Z_i] = \alpha + \tau \cdot (\gamma Z_i)$ 
  - $\rightsquigarrow$  A regression of  $Y_i$  on  $\gamma Z_i$  would have  $\tau$  as the slope.
- If the CEF is linear, then we have this simple relationship slopes:

$$\mathbb{E}[D_i|Z_i] = \delta + \gamma Z_i \qquad \rightsquigarrow \qquad \gamma = \frac{\text{cov}(D_i, Z_i)}{\mathbb{V}(Z_i)}$$

· Applying this to above CEF, we have:

$$\tau = \frac{\mathsf{cov}(Y_i, \gamma Z_i)}{\mathbb{V}(\gamma Z_i)} = \frac{\mathsf{cov}(Y_i, Z_i)}{\gamma \mathbb{V}(Z_i)} = \frac{\mathsf{cov}(Y_i, Z_i)}{\mathsf{cov}(D_i, Z_i)}$$

- · TSLS estimator:
  - Estimate  $\hat{\gamma}$  from regression of treatment  $D_i$  on instrument  $Z_i$
  - Estimate  $\widehat{\tau}_{2SLS}$  as the slope of a regression of  $Y_i$  on  $\widehat{\gamma} Z_i$ .
  - Under this model,  $\widehat{\tau}_{2SLS} \xrightarrow{p} \tau$  (but don't use SEs from second stage; see MHE section 4.6.1. 2SLS Mistakes)

## **Binary Treatment and Instrument**

• Under binary treatment/instrument, TSLS estimand is the LATE:

$$\tau = \frac{\text{cov}(Y_i, Z_i)}{\text{cov}(D_i, Z_i)} = \frac{\mathbb{E}[Y_i | Z_i = 1] - \mathbb{E}[Y_i | Z_i = 0]}{\mathbb{E}[D_i | Z_i = 1] - \mathbb{E}[D_i | Z_i = 0]} = \frac{\text{ITT}_Y}{\text{ITT}_D} = \tau_{\text{LATE}}$$

## **Binary Treatment and Instrument**

Under binary treatment/instrument, TSLS estimand is the LATE:

$$\tau = \frac{\text{cov}(Y_i, Z_i)}{\text{cov}(D_i, Z_i)} = \frac{\mathbb{E}[Y_i | Z_i = 1] - \mathbb{E}[Y_i | Z_i = 0]}{\mathbb{E}[D_i | Z_i = 1] - \mathbb{E}[D_i | Z_i = 0]} = \frac{\text{ITT}_Y}{\text{ITT}_D} = \tau_{\text{LATE}}$$

· And that the TSLS estimator is the Wald estimator:

$$\widehat{\tau}_{2SLS} = \frac{\widehat{\text{cov}}(Y_i, Z_i)}{\widehat{\text{cov}}(D_i, Z_i)} = \frac{\overline{Y}_1 - \overline{Y}_0}{\overline{D}_1 - \overline{D}_0} = \frac{\widehat{\text{ITT}}_Y}{\widehat{\text{ITT}}_D} = \widehat{\tau}_{\text{iv}}$$

→ Constant effects model is not required for TSLS in this setting.

## **Binary Treatment and Instrument**

Under binary treatment/instrument, TSLS estimand is the LATE:

$$\tau = \frac{\text{cov}(Y_i, Z_i)}{\text{cov}(D_i, Z_i)} = \frac{\mathbb{E}[Y_i | Z_i = 1] - \mathbb{E}[Y_i | Z_i = 0]}{\mathbb{E}[D_i | Z_i = 1] - \mathbb{E}[D_i | Z_i = 0]} = \frac{\text{ITT}_Y}{\text{ITT}_D} = \tau_{\text{LATE}}$$

· And that the TSLS estimator is the Wald estimator:

$$\widehat{\tau}_{\text{2SLS}} = \frac{\widehat{\text{cov}}(Y_i, Z_i)}{\widehat{\text{cov}}(D_i, Z_i)} = \frac{\overline{Y}_1 - \overline{Y}_0}{\overline{D}_1 - \overline{D}_0} = \frac{\widehat{\text{ITT}}_Y}{\widehat{\text{ITT}}_D} = \widehat{\tau}_{\text{iv}}$$

→ Constant effects model is not required for TSLS in this setting.

We need constant effects when we add covariates:

$$Y_i = \alpha + \tau D_i + \mathbf{X}_i' \beta_y + \varepsilon_i$$
  
$$D_i = \delta + \gamma Z_i + \mathbf{X}_i' \beta_d + \eta_i$$

• Otherwise,  $\tau$  is an odd weighted function of causal effects and  $\tau \neq \tau_{\text{LATE}}$ .

#### **Weak Instruments**

- IV is unstable if instrument weakly affects treatment;  $cov(D_i, Z_i) \approx 0$ .
- Example completely irrelevant instrument:

$$Y_i = \tau D_i + \varepsilon_i,$$
  $\mathbb{E}[\varepsilon_i | D_i] \neq 0$   
 $D_i = 0 \times Z_i + \eta_i,$   $\mathbb{E}[\varepsilon_i | Z_i] = \mathbb{E}[\eta_i | Z_i] = 0$ 

 Note that we only assume mean independence, so cov(D<sub>i</sub>, Z<sub>i</sub>) could be non-zero.

#### **Weak Instruments**

- IV is unstable if instrument weakly affects treatment;  $cov(D_i, Z_i) \approx 0$ .
- Example completely irrelevant instrument:

$$Y_i = \tau D_i + \varepsilon_i, \qquad \mathbb{E}[\varepsilon_i | D_i] \neq 0$$

$$D_i = 0 \times Z_i + \eta_i, \quad \mathbb{E}[\varepsilon_i | Z_i] = \mathbb{E}[\eta_i | Z_i] = 0$$

- Note that we only assume mean independence, so  $cov(D_i, Z_i)$  could be non-zero.
- · The bias of the Wald estimator:

$$\widehat{\tau}_{iv} - \tau = \frac{\widehat{cov}(\tau D_i + \varepsilon_i, Z_i)}{\widehat{cov}(D_i, Z_i)} - \tau = \frac{\frac{1}{n} \sum_{i=1}^n \varepsilon_i Z_i}{\frac{1}{n} \sum_{i=1}^n \eta_i Z_i} \xrightarrow{d} \underbrace{\frac{cov(\varepsilon_i, \eta_i)}{\mathbb{V}[\varepsilon_i]}}_{\text{bias}} + \underbrace{\frac{W_i}{Cauchy rv}}_{\text{Cauchy rv}}$$

#### **Weak Instruments**

- IV is unstable if instrument weakly affects treatment;  $cov(D_i, Z_i) \approx 0$ .
- **Example** completely irrelevant instrument:

$$Y_i = \tau D_i + \varepsilon_i, \qquad \mathbb{E}[\varepsilon_i | D_i] \neq 0$$

$$D_i = 0 \times Z_i + \eta_i, \quad \mathbb{E}[\varepsilon_i | Z_i] = \mathbb{E}[\eta_i | Z_i] = 0$$

- Note that we only assume mean independence, so  $cov(D_i, Z_i)$  could be non-zero.
- · The bias of the Wald estimator:

$$\widehat{\tau_{\text{iv}}} - \tau = \frac{\widehat{\text{cov}}(\tau D_i + \varepsilon_i, Z_i)}{\widehat{\text{cov}}(D_i, Z_i)} - \tau = \frac{\frac{1}{n} \sum_{i=1}^n \varepsilon_i Z_i}{\frac{1}{n} \sum_{i=1}^n \eta_i Z_i} \xrightarrow{d} \underbrace{\frac{\text{cov}(\varepsilon_i, \eta_i)}{\mathbb{V}[\varepsilon_i]}}_{\text{bias}} + \underbrace{\frac{W_i}{Cauchy rv}}_{\text{Cauchy rv}}$$

- Inconsistent and asymptotically heavy tails (b/c of Cauchy)
  - When  $Z \to D$  effect is small but non-zero, we see similar behavior.

#### What to Do About Weak Instruments?

- · Detecting weak instruments:
  - F-test on instruments (excluded from second stage):  $H_0$ :  $\gamma = 0$ .
  - Rule of thumb: bias is small when F-stat  $\geq 10$  (Stock & Yogo, 2005).
  - Correct coverage may require cutoff  $F \ge 104.7$  (Lee et al. 2022).
    - The latter is a worst-case, typical data maybe okay with 10 cutoff.
  - With HC or cluster-robust SEs, report the Kleibergen-Paap F-stat. (e.g., see Barron et al. 2021)

#### What to Do About Weak Instruments?

- · Detecting weak instruments:
  - F-test on instruments (excluded from second stage):  $H_0$ :  $\gamma = 0$ .
  - Rule of thumb: bias is small when F-stat  $\geq 10$  (Stock & Yogo, 2005).
  - Correct coverage may require cutoff  $F \ge 104.7$  (Lee et al. 2022).
  - The latter is a worst-case, typical data maybe okay with 10 cutoff.
  - With HC or cluster-robust SEs, report the Kleibergen-Paap F-stat. (e.g., see Barron et al. 2021)
- Anderson-Rubin (1949) test (simplified setting, binary Z/D)
  - $H_0: \tau = \tau_0$  equivalent to  $H_0: ITT_Y ITT_D \cdot \tau_0$
  - Under the null, asymptotically we have:

$$\begin{split} g(\tau_0) &= \widehat{\mathsf{ITT}}_Y - \widehat{\mathsf{ITT}}_D \tau_0 \sim \mathcal{N}(0, \Omega(\tau_0)) \\ \Omega(\tau_0) &= \mathbb{V}[\widehat{\mathsf{ITT}}_Y] + \tau_0^2 \mathbb{V}[\widehat{\mathsf{ITT}}_D] - 2\tau_0 \mathsf{cov}(\widehat{\mathsf{ITT}}_Y, \widehat{\mathsf{ITT}}_D) \end{split}$$

- AR test statistic:  $g(\tau_0)^2/\Omega(\tau_0) \sim \chi^2$  no matter first-stage effect.
- Can invert (analytically!) to get confidence intervals.

- · Generalization of these ideas:
  - Multi-valued treatment:  $D_i \in \{0, 1, ..., K-1\}$
  - Binary instrument:  $Z_i \in \{0, 1\}$

- · Generalization of these ideas:
  - Multi-valued treatment:  $D_i \in \{0, 1, \dots, K-1\}$
  - Binary instrument:  $Z_i \in \{0, 1\}$
- Assumptions:
  - Randomization:  $[\{Y_i(z,d), \forall z,d\}, D_i(1), D_i(0)] \perp Z_i$
  - Monotonicity:  $D_i(1) \ge D_i(0)$  (instrument only increases treatment)
  - Exclusion restriction:  $Y_i(1, d) = Y_i(0, d)$  for all d = 0, 1, ..., K 1

- · Generalization of these ideas:
  - Multi-valued treatment:  $D_i \in \{0, 1, ..., K-1\}$
  - Binary instrument:  $Z_i \in \{0, 1\}$
- Assumptions:
  - Randomization:  $[\{Y_i(z,d), \forall z, d\}, D_i(1), D_i(0)] \perp Z_i$
  - Monotonicity:  $D_i(1) \ge D_i(0)$  (instrument only increases treatment)
  - Exclusion restriction:  $Y_i(1, d) = Y_i(0, d)$  for all d = 0, 1, ..., K 1
- Can't identify the proportion of all compliance types here.

- · Generalization of these ideas:
  - Multi-valued treatment:  $D_i \in \{0, 1, ..., K-1\}$
  - Binary instrument:  $Z_i \in \{0, 1\}$
- Assumptions:
  - Randomization:  $[\{Y_i(z,d), \forall z,d\}, D_i(1), D_i(0)] \perp Z_i$
  - Monotonicity:  $D_i(1) \ge D_i(0)$  (instrument only increases treatment)
  - Exclusion restriction:  $Y_i(1, d) = Y_i(0, d)$  for all d = 0, 1, ..., K 1
- Can't identify the proportion of all compliance types here.
- Example:  $K = 3 \rightsquigarrow 9$  principal strata
  - Affected:  $(D_i(0), D_i(1)) \in \{(0, 1), (0, 2), (1, 2)\}$
  - Unaffected:  $(D_i(0), D_i(1)) \in \{(0,0), (1,1), (2,2)\}$
  - Negatively affected:  $(D_i(0), D_i(1)) \in \{(1,0), (2,0), (2,1)\}$
  - Last ruled out by monotonicity.
  - 5 unknowns and 4 knowns under monotonicity.

#### **TSLS with Multivalued Treatments**

- Let  $C_i = jk$  be an indicator for compliance type  $D_i(1) = j$  and  $D_i(0) = k$ .
  - People that are moved from k to j by the instrument.
  - Let  $\rho_{jk} = \mathbb{P}(D_i(1) = j, D_i(0) = k)$  be the strata size.

#### **TSLS with Multivalued Treatments**

- Let  $C_i = jk$  be an indicator for compliance type  $D_i(1) = j$  and  $D_i(0) = k$ .
  - People that are moved from k to j by the instrument.
  - Let  $\rho_{jk} = \mathbb{P}(D_i(1) = j, D_i(0) = k)$  be the strata size.
- We can show that the 2SLS estimator converges to:

$$\widehat{\tau}_{2SLS} \xrightarrow{p} \sum_{k=0}^{K-1} \sum_{j=k+1}^{K-1} \omega_{jk} \mathbb{E}\left(\frac{Y_i(1) - Y_i(0)}{j-k} \middle| C_i = jk\right)$$

$$\omega_{jk} = \frac{(j-k)\rho_{jk}}{\sum_{s=0}^{K-1} \sum_{t=s+1}^{K-1} (s-t)\rho_{st}}$$

#### **TSLS with Multivalued Treatments**

- Let  $C_i = jk$  be an indicator for compliance type  $D_i(1) = j$  and  $D_i(0) = k$ .
  - People that are moved from k to j by the instrument.
  - Let  $\rho_{ik} = \mathbb{P}(D_i(1) = j, D_i(0) = k)$  be the strata size.
- We can show that the 2SLS estimator converges to:

$$\widehat{\tau}_{2SLS} \xrightarrow{p} \sum_{k=0}^{K-1} \sum_{j=k+1}^{K-1} \omega_{jk} \mathbb{E}\left(\frac{Y_{i}(1) - Y_{i}(0)}{j - k} \middle| C_{i} = jk\right)$$

$$\omega_{jk} = \frac{(j - k)\rho_{jk}}{\sum_{s=0}^{K-1} \sum_{t=s+1}^{K-1} (s - t)\rho_{st}}$$

- Intuition: a weighted average of effects per dose for each affected type.
  - Weights are proportional to size of the strata and how big the effect of the instrument is for that strata.
  - If instrument can only increase by 1 dose, then simplifies to weighted average of principal strata effects.

# 2/ General Two-Stage Least Squares

#### **General 2SLS**

Linear model for each i:

$$Y_i = \mathbf{X}_i' \boldsymbol{\beta} + \boldsymbol{\varepsilon}_i$$

- $\mathbf{X}_i$  is  $k \times 1$  and now includes  $D_i$  and any pretreatment covariates.
- Parts of  $\mathbf{X}_i$  are endogenous so that  $\mathbb{E}[\boldsymbol{\varepsilon}_i \mid \mathbf{X}_i] \neq 0$
- Instruments  $\mathbf{Z}_i$  that is  $\ell \times 1$  vector such that  $\mathbb{E}[\varepsilon_i \mid \mathbf{Z}_i] = 0$ .
  - $\mathbf{Z}_i$  might include exogenous/pretreatment variables from  $\mathbf{X}_i$  as well.
  - Rank condition:  $\mathbb{E}[\mathbf{Z}_i\mathbf{Z}_i']$  and  $\mathbb{E}[\mathbf{X}_i\mathbf{Z}_i']$  have full rank.
- · Identification:
  - $k = \ell$ : just-identified.
  - $k < \ell$ : over-identified (can test the exclusion restriction, kinda)
  - $k > \ell$ : unidentified (fails rank condition)

## **Nasty Matrix Algebra**

• Projection matrix projects values of  $X_i$  onto  $Z_i$ :

$$\mathbf{\Pi} = (\mathbb{E}[\mathbf{Z}_i \mathbf{Z}_i'])^{-1} \mathbb{E}[\mathbf{Z}_i \mathbf{X}_i'] \quad \text{(projection matrix, i.e., pi/$\Pi$)}$$
$$\tilde{\mathbf{X}}_i = \mathbf{\Pi}' \mathbf{Z}_i \quad \text{(projected values)}$$

• To derive the 2SLS estimator, take the fitted values,  $\Pi'\mathbf{Z}_i$  and multiply both sides of the outcome equation by them:

$$Y_{i} = \mathbf{X}_{i}'\beta + \varepsilon_{i}$$

$$\mathbf{\Pi}'\mathbf{Z}_{i}Y_{i} = \mathbf{\Pi}'\mathbf{Z}_{i}\mathbf{X}_{i}'\beta + \mathbf{\Pi}'\mathbf{Z}_{i}\varepsilon_{i}$$

$$\mathbb{E}[\mathbf{\Pi}'\mathbf{Z}_{i}Y_{i}] = \mathbb{E}[\mathbf{\Pi}'\mathbf{Z}_{i}\mathbf{X}_{i}']\beta + \mathbb{E}[\mathbf{\Pi}'\mathbf{Z}_{i}\varepsilon_{i}]$$

$$\mathbb{E}[\mathbf{\Pi}'\mathbf{Z}_{i}Y_{i}] = \mathbb{E}[\mathbf{\Pi}'\mathbf{Z}_{i}\mathbf{X}_{i}']\beta + \mathbf{\Pi}'\mathbb{E}[\mathbf{Z}_{i}\varepsilon_{i}]$$

$$\mathbb{E}[\mathbf{\Pi}'\mathbf{Z}_{i}Y_{i}] = \mathbb{E}[\mathbf{\Pi}'\mathbf{Z}_{i}\mathbf{X}_{i}']\beta$$

$$\mathbb{E}[\tilde{\mathbf{X}}_{i}Y_{i}] = \mathbb{E}[\tilde{\mathbf{X}}_{i}\mathbf{X}_{i}']\beta$$

$$\beta = (\mathbb{E}[\tilde{\mathbf{X}}_{i}\mathbf{X}_{i}'])^{-1}\mathbb{E}[\tilde{\mathbf{X}}_{i}Y_{i}]$$

#### **How to Estimate the Parameters**

- Collect  $\mathbf{X}_i$  into an  $n \times k$  matrix  $\mathbb{X} = (\mathbf{X}_1', \dots, \mathbf{X}_n')$
- Collect  $\mathbf{Z}_i$  into an  $n \times \ell$  matrix  $\mathbb{Z} = (\mathbf{Z}_1', \dots, \mathbf{Z}_n')$
- In-sample projection matrix produces fitted values:

$$\widehat{\mathbb{X}} = \mathbb{Z}(\mathbb{Z}'\mathbb{Z})^{-1}\mathbb{Z}'\mathbb{X}$$

- Fitted values of the regression of X on Z.
- Matrix party trick:  $\mathbb{X}'\mathbb{Z}/n = (1/n) \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{Z}'_{i} \xrightarrow{p} \mathbb{E}[\mathbf{X}_{i}\mathbf{Z}'_{i}].$
- · Take the population formula for the parameters:

$$\beta = (\mathbb{E}[\tilde{\mathbf{X}}_i \mathbf{X}_i'])^{-1} \mathbb{E}[\tilde{\mathbf{X}}_i Y_i]$$

• And plug in the sample values (the *n* cancels out):

$$\widehat{\boldsymbol{\beta}}_{2SLS} = (\widehat{\mathbb{X}}'\mathbb{X})^{-1}\widehat{\mathbb{X}}'\mathbf{y} \stackrel{p}{\to} \boldsymbol{\beta}$$

This is how R/Stata estimate the 2SLS parameters.

## Asymptotic Variance for 2SLS

· We can write the centered, normalized TSLS estimator as:

$$\sqrt{n}(\widehat{\beta}_{2SLS} - \beta) = \underbrace{\left(n^{-1} \sum_{i} \widehat{\mathbf{X}}_{i} \widehat{\mathbf{X}}_{i}'\right)^{-1}}_{P} \underbrace{\left(n^{-1/2} \sum_{i} \widehat{\mathbf{X}}_{i} \varepsilon_{i}\right)}_{d} \underbrace{\left(n^{-1/2} \sum_{i} \widehat{\mathbf{X}}_{i} \varepsilon_{i}\right)}_{d}$$

• Thus,  $\sqrt{n}(\widehat{\beta}_{2SLS} - \beta)$  has asymptotic variance:

$$\left(\mathbb{E}[\widehat{\mathbf{X}}_{i}\widehat{\mathbf{X}}_{i}']\right)^{-1}\mathbb{E}[\widehat{\mathbf{X}}_{i}'\varepsilon_{i}'\varepsilon_{i}\widehat{\mathbf{X}}_{i}]\left(\mathbb{E}[\widehat{\mathbf{X}}_{i}\widehat{\mathbf{X}}_{i}']\right)^{-1}$$

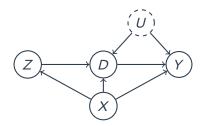
• Robust 2SLS variance estimator with residuals  $\widehat{u}_i = Y_i - \mathbf{X}_i' \widehat{\beta}$ :

$$\widehat{\mathsf{Var}}(\widehat{\boldsymbol{\beta}}_{\mathsf{2SLS}}) = (\widehat{\mathbb{X}}'\widehat{\mathbb{X}})^{-1} \Big( \sum_{i} \widehat{\boldsymbol{u}}_{i}^{2} \widehat{\mathbf{x}}_{i} \widehat{\mathbf{x}}_{i}' \Big) (\widehat{\mathbb{X}}'\widehat{\mathbb{X}})^{-1}$$

• HC2, clustering, and autocorrelation versions exist.

#### IV in Observational Studies and TSLS

- Motivation: what if there is unmeasured confounding?
- In observational studies where:
  - 1. treatment is not randomized and there exist unmeasured confounders;
  - 2. can find instrumental variable;
  - 3. exogenous covariates  $(\mathbf{X}_i)$ : may exist observable confounders between  $Z_i$ ,  $D_i$ , and  $Y_i$
- · DAG example:



## **Property Rights & Economic Development**







Recognize the person on the right?

- Q: Do property rights (i.e., institutions) promote economic development?
  - Famous paper on this: Acemoglu, Johnson, and Robinson (2001) AER
  - Relationship between strength of property rights in a country and GDP.

#### The AJR Data

| Name     | Description                                                    |
|----------|----------------------------------------------------------------|
| shortnam | three-letter country code                                      |
| africa   | indicator for if the country is in Africa                      |
| asia     | indicator for if country is in Asia                            |
| logem4   | log mortality rates faced by European settlers (IV)            |
| avexpr   | strength of property rights (protection against expropriation) |
| logpgp95 | log GDP per capita                                             |

```
> ajr <- read_csv("https://bit.ly/3RUJDWK"); ajr</pre>
 1
       # A tibble: 163 × 15
          shortnam africa lat_abst malfal94 avexpr logpgp95 logem4 asia yellow baseco leb95
                                       <dbl>
                                                       <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
          <chr>
                    <dbl>
                              <db1>
                                             <dbl>
        1 AFG
                            0.367
                                     0.00372
                                              NA
                                                       NA
                                                               4.54
                                                                                      NA NA
                        0
        2 AGO
                             0.137
                                     0.950
                                               5.36
                                                               5.63
                                                                                         46.5
 8
        3 ARF
                            0.267
                                     0.0123
                                               7.18
                                                        9.80
                                                                                      NA
                                                                                         NA
 9
        4 ARG
                            0.378
                                               6.39
                                                        9.13
                                                               4.23
                                                                                          72.9
10
        5 ARM
                            0.444
                                              NA
                                                        7.68
                                                              NA
                                                                                      NA
                                                                                          NA
11
        6 AUS
                            0.300
                                               9.32
                                                        9.90
                                                              2.15
                                                                                         78.2
12
        7 AUT
                            0.524
                                               9.73
                                                        9.97
                                                              NA
                                                                                      NA NA
13
        8 A7F
                            0.448
                                              NA
                                                        7.31
                                                              NA
                                                                                      NA NA
14
        9 BDI
                            0.0367
                                     0.950
                                                        6.57
                                                               5.63
                                              NA
                                                                                      NA
                                                                                          NA
15
       10 RFI
                             0.561
                                     0
                                               9.68
                                                        9.99
                                                              NA
                                                                                0
                                                                                      NA NA
16
       # 153 more rows
17
         4 more variables: imr95 <dbl>, meantemp <dbl>, lt100km <dbl>, latabs <dbl>
18
       # Use `print(n = ...) ` to see more rows
```

## In R: Example Code Using ajr Data

```
# Center (i.e., demeaning) the variables
 2
       > air <- air |>
 3
           mutate(
 4
             D_cnt = avexpr - mean(avexpr, na.rm = TRUE),
 5
             Y cnt = logpgp95 - mean(logpgp95, na.rm = TRUE).
             Z_cnt = logem4 - mean(logem4, na.rm = TRUE)
           ) |>
 8
           na.omit()
       # Compute the ITTs on D and on Y:
11
       > ITT D <- cov(air$Z cnt, air$D cnt)
12
       > ITT Y <- cov(air$Z cnt, air$Y cnt)
13
       > wald_estimate <- ITT_Y / ITT_D; round(wald_estimate, digits = 4)
14
       [1] 0.9242
15
16
       # Same as reg Y~Z / reg D~Z:
17
       > ITT_Y <- coef(lm(Y_cnt ~ Z_cnt, data = ajr))[[2]]
       > ITT D <- coef(lm(D cnt ~ Z cnt, data = air))[[2]]
18
19
       > wald estimate <- ITT Y / ITT D: round(wald estimate, digits = 4)
20
       [1] 0.9242
```

The Wald estimate from manual calculation: 0.9242

## In R: Example Code Using ajr Data

```
1
      # Compare with ivreg
      > ivreg_result <- AER::ivreg(Y_cnt ~ D_cnt | Z_cnt, data = ajr); summary(ivreg_result)</pre>
 3
 4
      Call.
      AER::ivreg(formula = Y_cnt ~ D_cnt | Z_cnt, data = ajr)
       Residuals:
           Min
                    10 Median 30
                                              Max
9
       -2.40175 -0.54950 0.01792 0.68944 1.67361
10
11
      Coefficients:
12
                   Estimate Std. Error t value Pr(>|t|)
13
       (Intercept) 3.031e-16 1.231e-01 0.000
14
               9.242e-01 1.547e-01 5.974 1.59e-07 ***
      D cnt
15
16
      Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
17
18
      Residual standard error: 0.9458 on 57 degrees of freedom
      Multiple R-Squared: 0.1107. Adjusted R-squared: 0.09506
19
20
      Wald test: 35.68 on 1 and 57 DF. p-value: 1.589e-07
21
22
      > round(coef(ivreg_result), digits = 4)
23
       (Intercept)
                    D cnt
24
           0.0000
                       0.9242
```

- The 2sls estimate from AER::ivreg(): 0.9242
  - Caveat: compute robust SE separately! (don't use SE from 2nd stage)

## In R: Example Code Using ajr Data

```
# Estimate robust SE with estimatr::iv_robust()

> iv_rob <- estimatr::iv_robust(Y_cnt ~ D_cnt | Z_cnt, data = ajr, se_type = "HC2"); iv_rob

Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF

(Intercept) 4.148820e-16 0.1234908 3.359619e-15 1.000000e+00 -0.2472860 0.247286 57

D_cnt 9.242173e-01 0.1791511 5.158871e+00 3.262823e-06 0.5654735 1.282961 57
```

Robust SE with HC2 using estimatr::iv\_robust(): 0.1791

 When adjusting for covariates in TSLS, include them both in the 1st and 2nd stage.

# IV Regression Table with modelsummary

1

```
modelsummary::modelsummary(
models = list(ivreg_result, iv_robust, iv_rob_cov),
coef_map = var_labels, gof_map = c("nobs", "r.squared", "adj.r.squared"), stars = T,
notes = "Note: See appendix for other model statistics.", output = "modelsummary_tab.tex")
```

|                                 | (1)      | (2)      | (3)                |
|---------------------------------|----------|----------|--------------------|
| Avg. Expropriation Risk (D_cnt) | 0.924*** | 0.924*** | 1.015**            |
| Abs. Value of Latitude          | (0.155)  | (0.179)  | (0.351)<br>-1.596  |
| Acian country                   |          |          | (1.529)<br>-1.048* |
| Asian country                   |          |          | (0.425)            |
| African country                 |          |          | -0.390             |
|                                 |          |          | (0.342)            |
| Num.Obs.                        | 59       | 59       | 59                 |
| R2                              | 0.111    | 0.111    | 0.045              |
| R2 Adj.                         | 0.095    | 0.095    | -0.026             |

<sup>+</sup> p < 0.1, \* p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001 Note: See appendix for other model statistics.

# 3/ Applications of IV

When you have a great idea for an IV but the first stage turns out to be not significant.

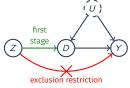


Source: Causal Inference for the Brave and True By Matheus Facure Alves

# Treatment Assignments as IVs

#### Bloom et al. (QJE 2015)1

 Context: 9-month RCT in Ctrip's Shanghai call-centre; 249 volunteers entered the lottery.



Instrument Z: even-birthday lottery eligibility.

Treatment D: actually working from home  $\geq$ 4 days/week.

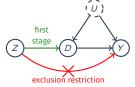
Outcome Y: weekly productivity index (calls, minutes logged-in, calls/minute).

<sup>&</sup>lt;sup>1</sup>Bloom, N., Liang, J., Roberts, J. & Ying, Z. "Does Working from Home Work?" *QJE* 2015. 130(1): 165–218.

# Treatment Assignments as IVs

#### Bloom et al. (QJE 2015)1

 Context: 9-month RCT in Ctrip's Shanghai call-centre; 249 volunteers entered the lottery.



Instrument Z: even-birthday lottery eligibility.

Treatment D: actually working from home  $\geq$ 4 days/week.

Outcome Y: weekly productivity index (calls, minutes logged-in, calls/minute).

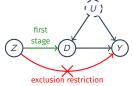
 Identification issue: Endogenous uptake; one-sided non-compliance (some winners revert, losers cannot WFH).

<sup>&</sup>lt;sup>1</sup>Bloom, N., Liang, J., Roberts, J. & Ying, Z. "Does Working from Home Work?" *QJE* 2015. 130(1): 165–218.

### Treatment Assignments as IVs

#### Bloom et al. (QJE 2015)1

 Context: 9-month RCT in Ctrip's Shanghai call-centre; 249 volunteers entered the lottery.



Instrument Z: even-birthday lottery eligibility.

Treatment D: actually working from home  $\geq 4$  days/week.

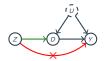
Outcome Y: weekly productivity index (calls, minutes logged-in, calls/minute).

- Identification issue: Endogenous uptake; one-sided non-compliance (some winners revert, losers cannot WFH).
- IV logic:
  - Randomization: Balance tests on 18 baseline characteristics show no joint differences; p=0.466.
  - 2. Relevance: 80-90% of winners comply (1st-stage F  $\approx$  23)
  - 3. Exclusion: tasks, pay, IT identical only location changes.

<sup>&</sup>lt;sup>1</sup>Bloom, N., Liang, J., Roberts, J. & Ying, Z. "Does Working from Home Work?" *QJE* 2015. 130(1): 165–218.

#### Narang and Shankar (Marketing Sci. 2019)<sup>2</sup>

 Context: Observational panel on 32 mil. customers of a U.S. video-game / electronics retailer, Jan 2013 – Dec 2015; firm's mobile-shopping app launched July 2014.



Instrument Z: number of cell towers in shopper's ZIP.

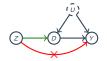
Treatment D: adoption of the retailer's mobile app.

Outcome Y: Monthly on/offline purchase & return amounts.

<sup>&</sup>lt;sup>2</sup>Narang & Shankar. "Mobile App Introduction and On- / Off-line Purchases and Product Returns." Marketing Sci. 2019. 38(5): 756 – 772.

#### Narang and Shankar (Marketing Sci. 2019)<sup>2</sup>

 Context: Observational panel on 32 mil. customers of a U.S. video-game / electronics retailer, Jan 2013 – Dec 2015; firm's mobile-shopping app launched July 2014.



Instrument Z: number of cell towers in shopper's ZIP.

Treatment D: adoption of the retailer's mobile app.

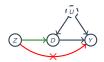
Outcome Y: Monthly on/offline purchase & return amounts.

 Identification issue: Self-selection—tech-savvy or high-value shoppers more likely to install the app.

<sup>&</sup>lt;sup>2</sup> Narang & Shankar. "Mobile App Introduction and On-/Off-line Purchases and Product Returns." Marketing Sci. 2019. 38(5): 756 – 772.

#### Narang and Shankar (Marketing Sci. 2019)<sup>2</sup>

 Context: Observational panel on 32 mil. customers of a U.S. video-game / electronics retailer, Jan 2013 – Dec 2015; firm's mobile-shopping app launched July 2014.



Instrument Z: number of cell towers in shopper's ZIP.

Treatment D: adoption of the retailer's mobile app.

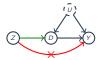
Outcome Y: Monthly on/offline purchase & return amounts.

- Identification issue: Self-selection—tech-savvy or high-value shoppers more likely to install the app.
- · IV logic:
  - 1. Randomization: 90% of cell-towers built before 2010 and shows only weak correlations with 2010–15 population growth and store count, included in  $\mathbf{X}_i$ .
  - 2. Relevance: Each cell tower raises the log-odds of adoption by 0.0022 (z=3.7).
  - Exclusion: controlled for ZIP income, store distance, and competitor presence to block direct demand channels.
  - Monotonicity: Better signal only increases the prob. of downloading the app (no defiers).

<sup>&</sup>lt;sup>2</sup> Narang & Shankar. "Mobile App Introduction and On- /Off-line Purchases and Product Returns." Marketing Sci. 2019. 38(5): 756 – 772.

#### Aral and Nicolaides (Nature Comm. 2017)3

 Context: Global fitness-tracking network, 1.1 Mil. runners, 3.4 Mil. ties, 350 Mil. km logged over 5 years.



Instrument Z: daily weather (rain/extreme temperature) in friend's city.

Treatment D: friend's running distance that day.

Outcome Y: user/ego's running distance (same or next day).

<sup>&</sup>lt;sup>3</sup>Sinan A. & Nicolaides C. "Exercise contagion in a global social network." Nature Communications. 2017. 8: 14753.

#### Aral and Nicolaides (Nature Comm. 2017)3

 Context: Global fitness-tracking network, 1.1 Mil. runners, 3.4 Mil. ties, 350 Mil. km logged over 5 years.



Instrument Z: daily weather (rain/extreme temperature) in friend's city.

Treatment D: friend's running distance that day.

Outcome Y: user/ego's running distance (same or next day).

 Identification issue: Homophily & shared shocks—similar friends exercise together or face the same local weather.

<sup>&</sup>lt;sup>3</sup>Sinan A. & Nicolaides C. "Exercise contagion in a global social network." Nature Communications. 2017. 8: 14753.

#### Aral and Nicolaides (Nature Comm. 2017)<sup>3</sup>

 Context: Global fitness-tracking network, 1.1 Mil. runners, 3.4 Mil. ties, 350 Mil. km logged over 5 years.



Instrument Z: daily weather (rain/extreme temperature) in friend's city.

Treatment D: friend's running distance that day.

Outcome Y: user/ego's running distance (same or next day).

- Identification issue: Homophily & shared shocks—similar friends exercise together or face the same local weather.
- IV logic:
  - Randomization: Use only friend pairs in different cities whose weather paths are uncorrelated; ego's own weather + date FE included.
  - 2. Relevance: first-stage F = 216-430 well above Stock-Yogo cutoff.
  - Exclusion: Weather in friend's city is uncorrelated with ego's weather by construction.
  - 4. Monotonicity: bad weather never makes the friend run more.

<sup>&</sup>lt;sup>3</sup>Sinan A. & Nicolaides C. "Exercise contagion in a global social network." Nature Communications. 2017. 8: 14753.

#### Barron et al. (Marketing Sci. 2020)4

• Context: Panel of 43,000 ZIP codes (100 largest U.S. metro areas), monthly 2011-2016. Airbnb listings scraped; Zillow rent & price indices matched at ZIP-month.



Instrument Z: Google-Trends "Airbnb" (global shock) × 2010 ZIP "touristiness" (# food/lodging firms)

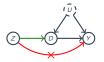
Treatment D:  $ln(1 + Airbnb \ listings)$  in ZIP-month.

Outcome Y: Zillow rent index, house price index , price-to-rent.

<sup>&</sup>lt;sup>4</sup>Barron, K., Kung, E., & Proserpio, D. "The Effect of Home-Sharing on House Prices and Rents" Marketing Sci. 2020. 40(2): 283–304.

#### Barron et al. (Marketing Sci. 2020)<sup>4</sup>

Context: Panel of 43,000 ZIP codes (100 largest U.S. metro areas), monthly 2011-2016.
 Airbnb listings scraped; Zillow rent & price indices matched at ZIP-month.



Instrument Z: Google-Trends "Airbnb" (global shock) × 2010 ZIP "touristiness" (# food/lodging firms)

Treatment D: ln(1 + Airbnb listings) in ZIP-month.

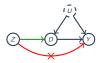
Outcome Y: Zillow rent index, house price index , price-to-rent.

Identification issue: Hot ZIPs attract both Airbnb supply and rising housing costs 
 wpward bias.

<sup>&</sup>lt;sup>4</sup>Barron, K., Kung, E., & Proserpio, D. "The Effect of Home-Sharing on House Prices and Rents" Marketing Sci. 2020. 40(2): 283–304.

#### Barron et al. (Marketing Sci. 2020)<sup>4</sup>

Context: Panel of 43,000 ZIP codes (100 largest U.S. metro areas), monthly 2011-2016.
 Airbnb listings scraped; Zillow rent & price indices matched at ZIP-month.



Instrument Z: Google-Trends "Airbnb" (global shock) × 2010 ZIP "touristiness" (# food/lodging firms)

Treatment D: ln(1 + Airbnb listings) in ZIP-month.

Outcome Y: Zillow rent index, house price index, price-to-rent.

- Identification issue: Hot ZIPs attract both Airbnb supply and rising housing costs 
   wupward bias.
- IV logic:
  - 1. Relevance: first-stage F = 650-820 well above Stock-Yogo cutoff.
  - Exclusion: global search shocks unrelated to local housing; touristiness fixed in 2010. City×month FE + placebo ZIPs (no listings) show no direct price effect.
  - Monotonicity: more global Airbnb awareness cannot lower listings in touristy ZIPs.

<sup>&</sup>lt;sup>4</sup>Barron, K., Kung, E., & Proserpio, D. "The Effect of Home-Sharing on House Prices and Rents" Marketing Sci. 2020. 40(2): 283–304.

#### Barron et al. (Marketing Sci. 2020)

- IV logic: 4. conditional unconfoundedness/randomization
  - Parallel pre-trends: prior to 2012, rents and prices evolve identically across touristiness quartiles (Fig. 5) → no pre-existing divergence.
  - Touristiness × time test: adding a ZIP-specific trend term (h<sub>i,2010</sub>×t) yields an insignificant coefficient; IV effect unchanged.
  - Rich time-varying controls: results robust after adding ZIP income, population, hotel rooms, TripAdvisor reviews, and airport arrivals → IV not picking up gentrification or tourism shocks.

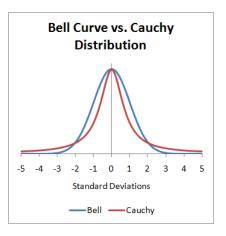
### Onto the presentations & discussions!

Contact Information: jaewon.yoo@iss.nthu.edu.tw https://j1yoo4.github.io/



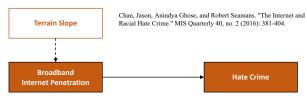
# **Appendix**

# **Cauchy vs. Normal Distribution**



Source: https://stats.stackexchange.com/questions/36027/why-does-the-cauchy-distribution-have-no-mean

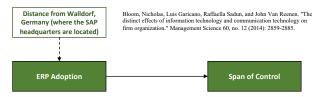
• Chan, Ghose, Seamans, MISQ, 2016:



- · Observational study using Hate Crime Statistics from FBI.
  - · RQ: Does the spread of Internet increase racial hate crime?
- · Issue? Confounding
- IV? terrain slope/steepness (i.e., how many hills in a given region?)

## **Geographical Proximity-Based IVs**

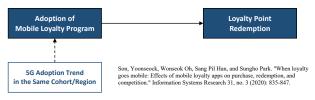
- RQ: Does the adoption of an ERP system impact plant manager autonomy (i.e., span of control)?
  - Span of control: the number of employees managed by supervisors or managers in an organization (high SoC = centralized).



- Observational study: the CEP management and organization survey and the Harte-Hanks ICT panel (Bloom, Garicano, Sadun, Van Reenen, MgmtSci, 2014).
- IV: Distance from the ERP market leader (i.e., SAP) w/ 25%+ market share 
   wlikely more established connections with SAP (German firms vs. French, England firms).

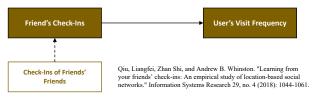
### Macro/Cohort Trends as IVs

 RQ: How does loyalty app adoption affect customer point redemption behavior?



- Observational study: data on loyalty app adoption status, loyalty point redemption patterns, and purchase behaviors in multivendor loyalty program (MVLP) context (Son, Oh, Han, Park, ISR, 2020).
- IV: 5G adoption rate in the same cohort (e.g., age group).

• Qiu, Shi, Whinston, ISR, 2018:



- Observational study using data on restaurant check-in information and the users' social network ties from a major SNS in China.
  - RQ: Is there observational learning/herding effect for restaurant discovery?
- · Issue? Homophily.
- · IV: Check-in activities of friend's friends.