11. Matching Estimators

ISS5096 || ECI Jaewon ("Jay-one") Yoo National Tsing Hua University

Credit: Created using Pixiz (https://en.pixiz.com/template/lt-s-a-Match-Tinder-mockery-with-customizable-text-3150)

Where are we? Where are we going?

- · Where we have found good controls:
 - Units randomized to receive control
 - · Units with similar values of covariates
 - · Units with opposite value of some instrument
 - Exploit two possible sources of variation for identification!
 - · Exploit cross-sectional variation in treatment.
 - Exploit variation in treatment within a unit over time (before/after)
 - At a discontinuity in treatment assignment (will cover in W13)
- · Can we make our identifications strategies work better?
 - ~ matching or weighting

The Problem with Regression

• Causal inference is all about comparing **counterfactuals**, like the ATT:

$$\tau_{\mathsf{ATT}} = \mathbb{E}[Y_i(1) - Y_i(0) \mid D_i = 1]$$

The Problem with Regression

Causal inference is all about comparing counterfactuals, like the ATT:

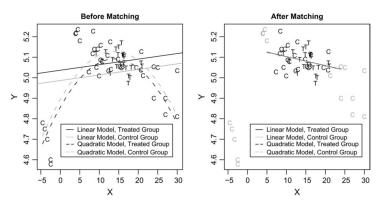
$$\tau_{ATT} = \mathbb{E}[Y_i(1) - Y_i(0) \mid D_i = 1]$$

Recall the imputation estimators with regression (ECI W5).

$$\widehat{\tau}_{\text{reg}} = \frac{1}{n_1} \sum_{i=1}^{n} D_i (Y_i - \widehat{\mu}_0(\mathbf{X}_i))$$

- Common solution: use a parametric model for $\widehat{\mu}_0(\mathbf{X}_i)$
 - For example, could assume it is linear: $\mu_0(\mathbf{x}) = \mathbf{x}'\boldsymbol{\beta}$
 - Regression, MLE, Bayes, etc.
 - But this model might be wrong
 wrong causal estimates.

Model Dependence



Source: Figure 1 in Ho, Daniel E., Kosuke Imai, Gary King, and Elizabeth A. Stuart. "Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference." Political analysis 15, no. 3 (2007): 199-236.

What is Matching?

Matching is a nonparametric imputation estimator:

$$\widehat{\tau}_m = \frac{1}{n_1} \sum_{i=1}^n D_i \left(Y_i - \frac{1}{M} \sum_{j \in \mathcal{J}_M(i)} Y_j \right)$$

- $\mathcal{J}(i)$ are the set of M closest control units to i in terms of \mathbf{X}_i
- Matching? = pruning bad controls (King, 2020)

What is Matching?

Matching is a nonparametric imputation estimator:

$$\widehat{\tau}_m = \frac{1}{n_1} \sum_{i=1}^n D_i \left(Y_i - \frac{1}{M} \sum_{j \in \mathcal{J}_M(i)} Y_j \right)$$

- $\mathcal{J}(i)$ are the set of M closest control units to i in terms of \mathbf{X}_i
- Matching? = pruning bad controls (King, 2020)
- Matching has strong advantages:
 - 1. Reduces dependence of estimates on parametric models.
 - 2. Reduces model-based extrapolation.
 - 3. Makes counterfactual comparisons more transparent.

What is Matching?

Matching is a nonparametric imputation estimator:

$$\widehat{\tau}_m = \frac{1}{n_1} \sum_{i=1}^n D_i \left(Y_i - \frac{1}{M} \sum_{j \in \mathcal{J}_M(i)} Y_j \right)$$

- $\mathcal{J}(i)$ are the set of M closest control units to i in terms of \mathbf{X}_i
- Matching? = pruning bad controls (King, 2020)
- Matching has strong advantages:
 - 1. Reduces dependence of estimates on parametric models.
 - 2. Reduces model-based extrapolation.
 - 3. Makes counterfactual comparisons more transparent.
- What matching isn't: a solution for selection on unobservables.
 - Matching is an **estimation** technique, not an identification strategy.

Types of Matching

- Assumptions:
 - No unmeasured confounders: $D_i \perp \!\!\! \perp (Y_i(0), Y_i(1)) \mid \mathbf{X}_i$
 - Overlap/positivity: $0 < \mathbb{P}(D_i = 1 \mid \mathbf{X}_i = x) < 1$

Types of Matching

- · Assumptions:
 - No unmeasured confounders: $D_i \perp \!\!\! \perp (Y_i(0), Y_i(1)) \mid \mathbf{X}_i$
 - Overlap/positivity: $0 < \mathbb{P}(D_i = 1 \mid \mathbf{X}_i = x) < 1$
- **Exact matching**: choose matches that have the same value of X_i .
 - $\mathcal{J}_M(i)$ is a random set of M control units with $\mathbf{X}_i = \mathbf{X}_i$
 - · Covariate distribution in treated and matched controls exactly the same:

$$\widehat{\mathbb{P}}(\mathbf{X}_i = \mathbf{x} \mid D_i = 1) = \widehat{\mathbb{P}}(\mathbf{X}_j = \mathbf{x} \mid D_j = 0, \ j \text{ is matched})$$

$$\leadsto \mathbb{E}[Y_i(0) \mid D_i = 1] = \mathbb{E}[Y_j(0) \mid D_j = 0, \ j \text{ is matched}]$$

• Issue: not feasible with high-dimensional or continuous \mathbf{X}_i

Types of Matching

- Assumptions:
 - No unmeasured confounders: $D_i \perp \!\!\! \perp (Y_i(0), Y_i(1)) \mid \mathbf{X}_i$
 - Overlap/positivity: $0 < \mathbb{P}(D_i = 1 \mid \mathbf{X}_i = x) < 1$
- **Exact matching**: choose matches that have the same value of X_i .
 - $\mathcal{J}_M(i)$ is a random set of M control units with $\mathbf{X}_i = \mathbf{X}_i$
 - · Covariate distribution in treated and matched controls exactly the same:

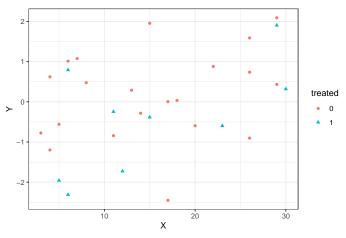
$$\widehat{\mathbb{P}}(\mathbf{X}_i = \mathbf{x} \mid D_i = 1) = \widehat{\mathbb{P}}(\mathbf{X}_j = \mathbf{x} \mid D_j = 0, \ j \text{ is matched})$$

$$\leadsto \mathbb{E}[Y_j(0) \mid D_i = 1] = \mathbb{E}[Y_j(0) \mid D_j = 0, \ j \text{ is matched}]$$

- Issue: not feasible with high-dimensional or continuous \mathbf{X}_i
- Coarsened exact matching (lacus et al, 2011)
 - Discretize and group covariates into substantively meaningful bins
 - Exact match on these bins → accounts for interactions
 - Have to drop treated units in bins with no controls → changes estimand
 - · Allows you to control bias/variance tradeoff through coarsening

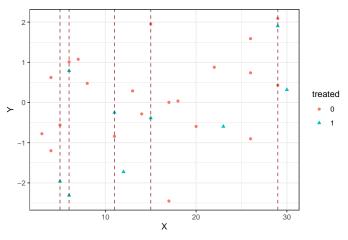
Exact Matching Illustrated

· How would we implement exact matching?



Exact Matching Illustrated

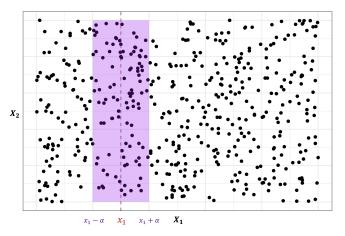
• Only keep data with **identical** X_i s!



• What to do when we have continuous X_i ?

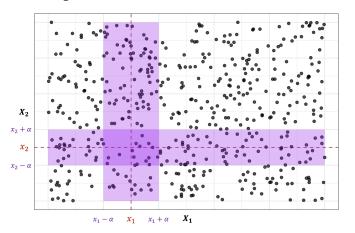
Curse of Dimensionality

- Often, we will have multiple covariates to match on:
 - Total observations in the raw data = 500
 - Remaining observations = 105



Curse of Dimensionality

- After performing 'exact matching' on 2 covariates:
 - Remaining observations = 17



 Q: would we still have observations left when we match on 3, 4, 5 covariates? What to do?

Matching in High Dimensions

- Even CEM can break down with high-dimensional X_i .
- We can define closeness using lower dimensional distance metrics
 - Reducing dimentionality: mapping two vectors to a single number.

Matching in High Dimensions

- Even CEM can break down with high-dimensional \mathbf{X}_i .
- We can define closeness using lower dimensional distance metrics
 - Reducing dimentionality: mapping two vectors to a single number.
- Mahalanobis distance:

$$D(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{(\mathbf{x}_i - \mathbf{x}_j)'\widehat{\Sigma}^{-1}(\mathbf{x}_i - \mathbf{x}_j)}$$

• $\widehat{\Sigma}$ is the estimated variance-covariance matrix of the observations:

$$\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})^T$$

Matching in High Dimensions

- Even CEM can break down with high-dimensional \mathbf{X}_i .
- We can define closeness using lower dimensional distance metrics
 - Reducing dimentionality: mapping two vectors to a single number.
- · Mahalanobis distance:

$$D(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{(\mathbf{x}_i - \mathbf{x}_j)'\widehat{\Sigma}^{-1}(\mathbf{x}_i - \mathbf{x}_j)}$$

• $\widehat{\Sigma}$ is the estimated variance-covariance matrix of the observations:

$$\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})^T$$

• Estimated propensity score (Rosenbaum and Rubin, 1983):

$$D(\mathbf{X}_i, \mathbf{X}_j) = |\widehat{\pi}(\mathbf{X}_i) - \widehat{\pi}(\mathbf{X}_j)| = |\widehat{\mathbb{P}}(D_i = 1 \mid \mathbf{X}_i) - \widehat{\mathbb{P}}(D_j = 1 \mid \mathbf{X}_j)|$$

• Some use linear predictor: $\mathrm{Dist}_{ij} = |\mathrm{logit}(\widehat{\pi}(\mathbf{X}_i)) - \mathrm{logit}(\widehat{\pi}(\mathbf{X}_j))|$

Other Matching Choices

- Matching ratio: how many control units per treated unit?
 - Lower reduces bias (only use the closest matches)
 - · Lower increases variance

Other Matching Choices

- Matching ratio: how many control units per treated unit?
 - Lower reduces bias (only use the closest matches)
 - Lower increases variance
- With or without replacement: same control matched to multiple treated?
 - · With replacement gives better matches & matching order doesn't matter.
 - Without replacement simplifies variance estimation.

Other Matching Choices

- Matching ratio: how many control units per treated unit?
 - Lower reduces bias (only use the closest matches)
 - · Lower increases variance
- With or without replacement: same control matched to multiple treated?
 - With replacement gives better matches & matching order doesn't matter.
 - Without replacement simplifies variance estimation.
- Caliper: drop poor matches?
 - Only keep matches below a distance threshold, $D(\mathbf{X}_i,\mathbf{X}_j) \leq c$
 - Rosenbaum and Rubin (1985): use c size equiv. to $0.25 \times \mathrm{sd}$ of the PS.
 - Reduces imbalance, but if you drop treated units, estimand changes.
 - \rightsquigarrow If we drop treated units, what are we estimating other than the ATT?

· Covariates are balanced conditional on true propensity scores:

$$D_i \perp \mathbf{X}_i \mid \pi(\mathbf{X}_i)$$

Covariates are balanced conditional on true propensity scores:

$$D_i \perp \!\!\!\perp \mathbf{X}_i \mid \pi(\mathbf{X}_i)$$

• Implies we only need to match/balance on $\pi(\mathbf{x})$:

$$\underbrace{(Y_i(0),Y_i(1)) \perp \!\!\! \perp D_i \mid \mathbf{X}_i}_{\text{conditional unconfoundedness}} \iff (Y_i(0),Y_i(1)) \perp \!\!\! \perp D_i \mid \pi(\mathbf{X}_i)$$

· Covariates are balanced conditional on true propensity scores:

$$D_i \perp \mathbf{X}_i \mid \pi(\mathbf{X}_i)$$

• Implies we only need to match/balance on $\pi(\mathbf{x})$:

$$\underbrace{(Y_i(0), Y_i(1)) \perp \!\!\! \perp D_i \mid \mathbf{X}_i}_{\text{conditional unconfoundedness}} \iff (Y_i(0), Y_i(1)) \perp \!\!\! \perp D_i \mid \pi(\mathbf{X}_i)$$

• In observational data, we never know the true $\pi(\mathbf{x}) \leadsto$ estimate $\widehat{\pi}(\mathbf{x})$

· Covariates are balanced conditional on true propensity scores:

$$D_i \perp \!\!\!\perp \mathbf{X}_i \mid \pi(\mathbf{X}_i)$$

• Implies we only need to match/balance on $\pi(\mathbf{x})$:

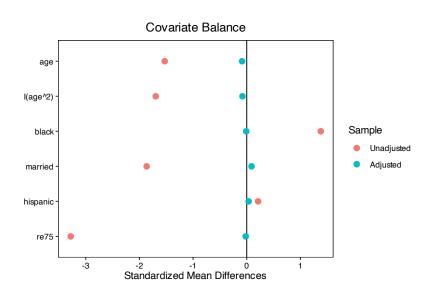
$$\underbrace{(Y_i(0), Y_i(1)) \perp \!\!\! \perp D_i \mid \mathbf{X}_i}_{\text{conditional unconfoundedness}} \iff (Y_i(0), Y_i(1)) \perp \!\!\! \perp D_i \mid \pi(\mathbf{X}_i)$$

- In observational data, we never know the true $\pi(\mathbf{x}) \rightsquigarrow \text{estimate } \widehat{\pi}(\mathbf{x})$
- Is balancing on $\widehat{\pi}(\mathbf{x})$ sufficient? **No idea!**
 - Have to check if \mathbf{X}_i is actually balanced.
 - Some what deflates the benefits of PS balancing/matching.
- → "propensity score tautology"

- Goal of matching is to maximize balance: $\widehat{F}_1(\mathbf{x}) \approx \widehat{F}_{0,\mathcal{J}}(\mathbf{x})$
 - Joint distribution of \mathbf{X}_i is similar between treated and matched controls.
 - Difficult to assess balance across many dimensions \leadsto summaries.

- Goal of matching is to maximize balance: $\widehat{F}_1(\mathbf{x}) \approx \widehat{F}_{0,\mathcal{J}}(\mathbf{x})$
 - Joint distribution of X_i is similar between treated and matched controls.
 - Difficult to assess balance across many dimensions ↔ summaries.
- · Options:
 - · Differences-in-means/medians, standardized.
 - · Visualize balance using Love plot.
 - QQ plots/KS statistics for comparing the entire distribution of X_i .

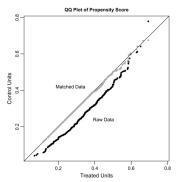
- Goal of matching is to maximize balance: $\widehat{F}_1(\mathbf{x}) \approx \widehat{F}_{0,\mathcal{J}}(\mathbf{x})$
 - Joint distribution of \mathbf{X}_i is similar between treated and matched controls.
 - Difficult to assess balance across many dimensions ↔ summaries.
- · Options:
 - · Differences-in-means/medians, standardized.
 - · Visualize balance using Love plot.
 - QQ plots/KS statistics for comparing the entire distribution of X_i .
- · Hypothesis tests for balance are problematic:
 - Dropping units can lower power (↑ p-values) without a change in balance.



	Nonadopters		Adopters		Differences
	Mean	Std dev	Mean	Std dev	in Means
Customer spending:					
Purchase amount (monetary)	21.133	14.251	21.207	15.407	-0.074
Number of transactions (frequency)	1.318	0.578	1.321	0.536	-0.003
Number of transactions per trip	1.161	0.450	1.149	0.422	0.012
Days since last purchase (recency)	118.011	83.374	117.085	85.634	0.926
Number of books purchased (quantity)	1.819	1.173	1.848	1.256	-0.029
Maximum price of the books purchased	12.915	5.782	12.957	6.311	-0.042
Consumption variety:					
Number of unique books	1.733	1.101	1.766	1.149	-0.033
Number of unique genres	1.272	0.511	1.286	0.512	-0.014
Number of unique authors	1.975	1.448	2.019	1.473	-0.044
Number of unique publishers	1.685	0.988	1.696	0.970	-0.011
Concentration on personal favorites:					
Genre concentration (norm. HHI)	0.907	0.161	0.903	0.156	0.004
Author concentration (norm. HHI)	0.753	0.266	0.750	0.256	0.003
Publisher concentration (norm. HHI)	0.788	0.239	0.791	0.228	-0.003
Best-seller purchases:					
Shares of top 10 best sellers	0.076	0.219	0.074	0.201	0.002
Shares of top 50 best sellers	0.147	0.298	0.142	0.272	0.005
Usage of Sales Channels:					
Share of in-store mobile sales	0.147	0.328	0.190	0.362	-0.043
Share of m-commerce sales	0.071	0.237	0.096	0.268	-0.025
Share of e-commerce sales	0.086	0.261	0.094	0.267	-0.008
Share of cash register sales	0.103	0.279	0.107	0.278	-0.004
Customer demographics:					
Age	31.193	7.310	31.151	7.394	0.042
Gender (male = 1)	0.333	0.471	0.341	0.474	-0.008

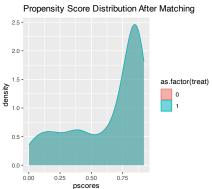
^{*} Significant at 10%; ** significant at 5%; *** significant at 1%.

Source: Table 3 of Yoo et al. "Mobile Payment and In-Store Mobile Purchase Behavior" KAIST Working Paper Series

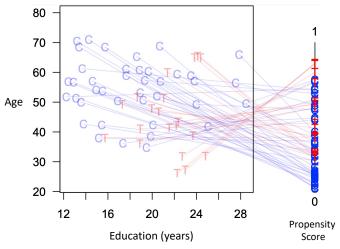


Source: Figure 3 in Ho, Daniel E., et al. "Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference." Political analysis 15.3 (2007): 199-236.



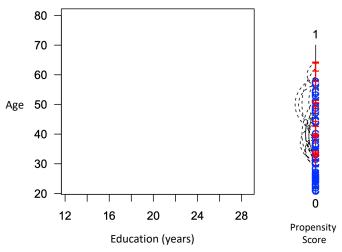


PSM Illustrated



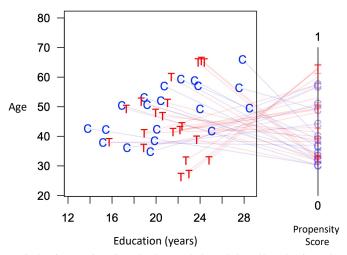
Credit: Figure from Gary King's talk on "The Balance-Sample Size Frontier in Matching Methods for Causal Inference," at University of Michigan, January 24, 2014.

PSM Illustrated



Credit: Figure from Gary King's talk on "The Balance-Sample Size Frontier in Matching Methods for Causal Inference," at University of Michigan, January 24, 2014.

PSM Illustrated



Credit: Figure from Gary King's talk on "The Balance-Sample Size Frontier in Matching Methods for Causal Inference," at University of Michigan, January 24, 2014.

Example: LaLonde Dataset

- The effectiveness of a job training program (National Supported Work Demonstration; NSW) on wage increases.
 - The federal government instituted a randomized evaluation of this program.
 - How well the result may be recovered when the experimental controls are replaced with a set of observational controls (Population Survey of Income Dynamics; PSID)?
 - Data publically available at NBER data archive.

Example: LaLonde dataset

· Data:

- Treated: 297 units from NSW
- · Control: 2490 units from PSID
- Treatment: Participation in the job training program (treat)
- Outcome: 1978 earnings (in dollars; re78)
- Pre-treatment covariates: age, race, marriage, past earnings, past employment

· Import ant process data:

```
> pacman::p load(tidvverse, broom, cobalt, Matching, MatchIt)
 1
      > lalonde_nsw <- haven::read_dta(url("http://www.nber.org/~rdehejia/data/nsw.dta"))</pre>
      > PSID_obs <- haven::read_dta(url("http://www.nber.org/~rdehejia/data/psid_controls.dta"))</pre>
      > lalonde_ECI <- full_join(lalonde_nsw |>
          filter(treat == 1),
 8
          PSID obs): lalonde ECI
 9
10
       # A tibble: 2,787 × 11
11
         data id treat age education black hispanic married nodegree re75 re78
12
         <chr> <dh1> <dh1>
                                  <dbl> <dbl>
                                                 <fdh>> <fdh>>
                                                                 <dbl> <dbl> <dbl>
       1 Lalonde S. . . 1
13
                               37
                                                                             0 9930.
14
       2 Lalonde S. . .
                                                                             0 3596.
15
       3 Lalonde S. . . 1
                              30
                                                                             0 24909.
       4 Lalonde S. . .
                                                                             0 7506.
16
17
       5 Lalonde S. . .
                               33
                                                                             0 290.
18
       6 Lalonde S. . .
                                                                             0 4056
19
       7 Lalonde S. . .
                                                                             0 0
20
       8 Lalonde S. . .
                              32
                                                                             0 8472.
21
       9 Lalonde S. . .
                                         16
                                                                        0
                                                                             0 2164
       10 Lalonde S. . .
22
                         1 33
                                                                             0 12418
23
       # 2,777 more rows
       # 1 more variable: re74 <dbl>
24
25
       # Use `print(n = ...) ` to see more rows
```

· Assessing balance before matching:

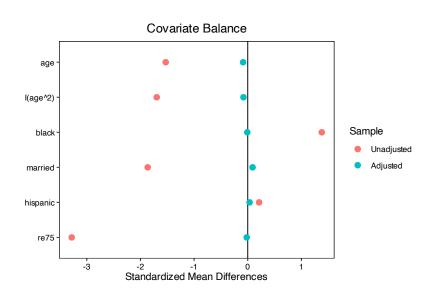
```
> bal.tab(x = lalonde_ECI |> dplyr::select(age:re78),
 1
                 treat = lalonde_ECI$treat, continuous = "std", binary = "std")
 3
       Note: `s.d.denom` not specified; assuming "pooled".
       Balance Measures
 5
                   Type Diff.Un
       age
                Contin. -1.1662
 8
       education Contin. -0.6862
9
       black Binary 1.3222
10
       hispanic Binary 0.2554
       married Binary -1.9513
11
12
       nodegree Binary 0.9409
13
       re75
                Contin. -1.5662
14
       re78
                Contin. -1.2939
15
16
       Sample sizes
17
          Control Treated
18
       A11
              2490
                      297
```

• Estimate propensity score using logistic regression:

• Assess covariate balance after matching using love plot:

```
> cobalt::love.plot(treat ~ age + I(age^2) + black + married + hispanic + re75,
data = lalonde_ECI,
stats = "mean.diffs",
weights = data.frame(Matched = get.w(match_ps)),
method = c("matching"), binary = "std")
```

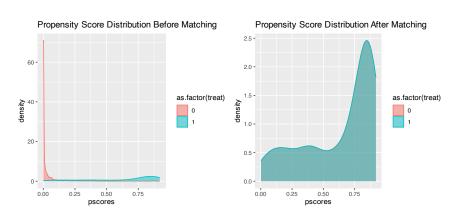
Balance test using Love Plot



• Estimate propensity score using logistic regression:

```
1
       # Attach estimated propensity scores
       > lalonde_ECI$pscores <- pscores
       # Extract matched indices
       > matched_indices <- unlist(match_ps[c("index.treated", "index.control")])</pre>
 6
       > matched_data <- lalonde_ECI[matched_indices, ]</pre>
 8
       # Create a density plot of the propensity scores
       > ps_dist_before <- lalonde_ECI |>
10
           ggplot(aes(x = pscores, group = treat.
11
                      color = as.factor(treat).
12
                      fill = as.factor(treat))) +
13
           geom_density(alpha = .5) +
14
           labs(title = "Propensity Score Distribution Before Matching")
15
16
       > ps_dist_after <- matched_data |>
17
           ggplot(aes(x = pscores, group = treat,
18
                      color = as.factor(treat),
19
                       fill = as.factor(treat))) +
20
           geom densitv(alpha = .5) +
21
           labs(title = "Propensity Score Distribution After Matching")
22
23
       > ggpubr::ggarrange(ps dist before, ps dist after)
```

Propensity Score Distributions



On to the Presentations & Discussions!

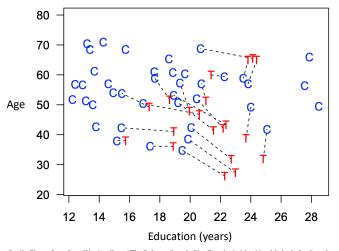
Contact Information: jaewon.yoo@iss.nthu.edu.tw https://j1yoo4.github.io/

Appendix

Matching in High Dimensions

Mahalanobis Distance Matching:

• Prune observations where $Dist_{ij} > caliper$ (\rightsquigarrow caliper? = cutoff point)

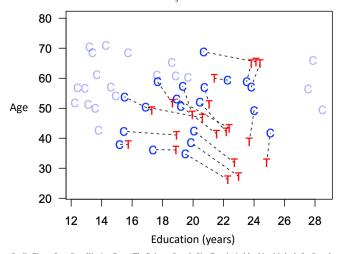


Credit: Figure from Gary King's talk on "The Balance-Sample Size Frontier in Matching Methods for Causal Inference," at University of Michigan, January 24, 2014.

Matching in High Dimensions

Mahalanobis Distance Matching:

• Prune observations where $Dist_{ij} > caliper$ (\rightsquigarrow caliper? = cutoff point)



Credit: Figure from Gary King's talk on "The Balance-Sample Size Frontier in Matching Methods for Causal Inference," at University of Michigan, January 24, 2014.

Inverse Probability Weighting (IPW) Adjustments

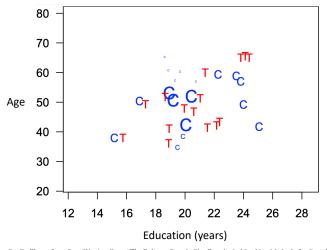
- · Matching (via pruning) has a downside:
 - It throws away data!
 - More problematic when we discard treated units ↔ changes estimand!
- Propensity scores can also be used as inverse weights directly when estimating the causal estimand.
- · Horvitz-Thompson IPW estimator for treatment effects:

$$\widehat{ATE} = \widehat{\tau}_{ipw} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{D_i Y_i}{\widehat{\pi}(\mathbf{X}_i)} - \frac{(1 - D_i) Y_i}{1 - \widehat{\pi}(\mathbf{X}_i)} \right)$$

- Under no unmeasured confounders, $\mathbb{E}[\widehat{ au}_{\mathsf{ipw}}] \xrightarrow{p} au_{\mathsf{ATE}}$
- Intuition: up-weight units that have smaller 'treatment' probability (underrepresented) \(\simes \) sample more representative of population.

IPW Adjustments

• Applying weights to units instead of pruning.



Credit: Figure from Gary King's talk on "The Balance-Sample Size Frontier in Matching Methods for Causal Inference," at University of Michigan, January 24, 2014.

Bias of inexact matching

- To show the bias on matching, focus on finding a single control match.
- Let j(i) be the matched control for unit i, the bias is:

$$\mathbb{E}\left[Y_j \mid D_i = 1, \mathbf{x}_i, \mathbf{x}_j\right] - \mathbb{E}[Y_i(0) \mid D_i = 1, \mathbf{x}_i] = \underbrace{(\mu_0(\mathbf{x}_i) - \mu_0(\mathbf{x}_{j(i)}))}_{\text{unit-level bias}}$$

- Bias is o if matching is exact since $\mathbf{X}_i = \mathbf{X}_{i(i)}$
- Bias grows with matching discrepancy/imbalance.
- Bias correction: estimate $\widehat{\mu}_0(\mathbf{x})$ with regression and estimate bias.

$$\widehat{Y}_i(0) = Y_{j(i)} - (\widehat{\mu}_0(\mathbf{X}_i) - \widehat{\mu}_0(\mathbf{X}_{j(i)}))$$

- Imputation of missing potential outcome now matching + regression.
- Generalizes easily to any number of matches.

Sampling Variance

- · Matching with replacement: cluster on the match.
 - · Can either use clustered SEs or cluster bootstrap.
 - · Valid for post-matching regression (Abadie and Spiess, 2021)
- Matching without replacement: more complicated.
 - · Same control unit matched to multiple treated: no easy clustering.
 - $K_M(i)$ is the number of times a unit is used as a match
- · Assuming units are well-matched so bias can be ignored,

$$\mathbb{V}(\widehat{\tau}_m) = \frac{1}{n_1} \left(\underbrace{\mathbb{E}\left[(\tau(\mathbf{X}_i) - \tau_{\mathsf{ATT}})^2 \mid D_i = 1 \right]}_{\mathsf{variance of CATE on treated}} + \underbrace{\mathbb{V}[\widehat{\tau}_m \mid \mathbb{X}, \mathbf{D}]}_{\mathsf{conditional variance}} \right)$$

 Abadie and Imbens (2006) provides matching-based variance estimators.