13. More on RDDs

ISS5096 || ECI Jaewon ("Jay-one") Yoo National Tsing Hua University

1/ Fuzzy Regression Discontinuity Designs

The Setup

- Recall treatment: $D_i = 1$ or $D_i = 0$ and forcing variable: X_i .
- Fuzzy RD: discontinuity in the probability of treatment.

$$\lim_{x\uparrow c} \mathbb{P}\big[D_i = 1 \mid X_i = x\big] \neq \lim_{x\downarrow c} \mathbb{P}\big[D_i = 1 \mid X_i = x\big]$$

- No longer deterministic function of forcing variable.
- SRD is a special case of the FRD.

The Setup

- Recall treatment: $D_i = 1$ or $D_i = 0$ and forcing variable: X_i .
- Fuzzy RD: discontinuity in the probability of treatment.

$$\lim_{x \uparrow c} \mathbb{P}[D_i = 1 \mid X_i = x] \neq \lim_{x \downarrow c} \mathbb{P}[D_i = 1 \mid X_i = x]$$

- No longer deterministic function of forcing variable.
- · SRD is a special case of the FRD.
- · Common use case: threshold allows participation in program.
 - Some might not participate even if allowed (noncompliance).

The Setup

- Recall treatment: $D_i = 1$ or $D_i = 0$ and forcing variable: X_i .
- Fuzzy RD: discontinuity in the probability of treatment.

$$\lim_{x \uparrow c} \mathbb{P}[D_i = 1 \mid X_i = x] \neq \lim_{x \downarrow c} \mathbb{P}[D_i = 1 \mid X_i = x]$$

- No longer deterministic function of forcing variable.
- SRD is a special case of the FRD.
- · Common use case: threshold allows participation in program.
 - Some might not participate even if allowed (noncompliance).
- Forcing variable is an **instrument**:
 - Affects Y_i , but only through D_i (at the threshold).

Fuzzy RD in a Graph (Imbens and Leminux, 2008)

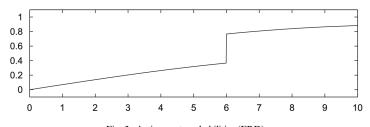


Fig. 3. Assignment probabilities (FRD).

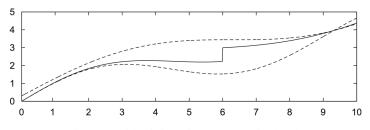


Fig. 4. Potential and observed outcome regression (FRD).

Source: Figure 4 in Imbens, Guido W., and Thomas Lemieux "Regression discontinuity designs: A guide to practice." Journal of econometrics 142, no. 2 (2008): 615-635.

Fuzzy RD in a Graph (Imbens and Leminux, 2008)

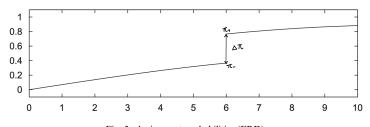


Fig. 3. Assignment probabilities (FRD).

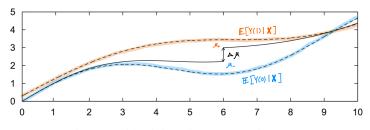


Fig. 4. Potential and observed outcome regression (FRD).

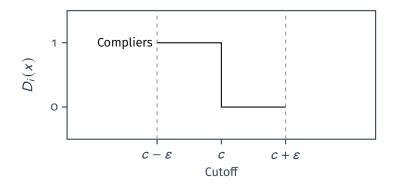
Source: Figure 4 in Imbens, Guido W., and Thomas Lemieux "Regression discontinuity designs: A guide to practice." Journal of econometrics 142, no. 2 (2008): 615-635.

- $D_i(x)$ is potential value of treatment as cutoff changes around c.
 - $D_i(x) = 1$ if unit i would take treatment if cutoff were x.
 - $D_i(x) = 0$ if unit i would take control if cutoff were x.

- $D_i(x)$ is potential value of treatment as cutoff changes around c.
 - $D_i(x) = 1$ if unit i would take treatment if cutoff were x.
 - $D_i(x) = 0$ if unit i would take control if cutoff were x.
- Monotonicity assumption: $D_i(x)$ is non-increasing in x.
 - Lowering the cutoff can only increase participation.

- $D_i(x)$ is potential value of treatment as cutoff changes around c.
 - $D_i(x) = 1$ if unit i would take treatment if cutoff were x.
 - $D_i(x) = 0$ if unit *i* would take control if cutoff were *x*.
- Monotonicity assumption: $D_i(x)$ is non-increasing in x.
 - · Lowering the cutoff can only increase participation.
- Compliers are those i such that for all $0 < e < \varepsilon$:

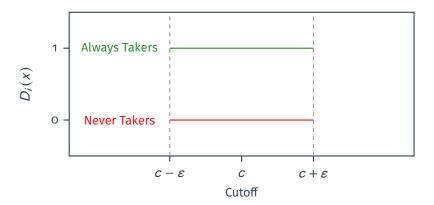
$$D_i(c-e)=1$$
 and $D_i(c+e)=0$


- · Lowering or increasing the threshold would affect their treatment status.
- Compliance status unobservable
 - Principal strata (Frangakis and Rubin, 2002. Biometrics).

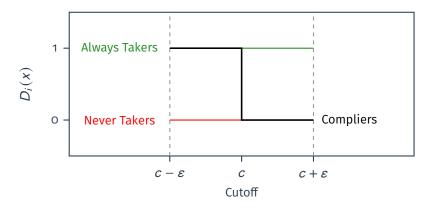
- $D_i(x)$ is potential value of treatment as cutoff changes around c.
 - $D_i(x) = 1$ if unit i would take treatment if cutoff were x.
 - $D_i(x) = 0$ if unit *i* would take control if cutoff were *x*.
- Monotonicity assumption: $D_i(x)$ is non-increasing in x.
 - Lowering the cutoff can only increase participation.
- Compliers are those i such that for all $0 < e < \varepsilon$:

$$D_i(c-e)=1$$
 and $D_i(c+e)=0$

- Lowering or increasing the threshold would affect their treatment status.
- · Compliance status unobservable
 - Principal strata (Frangakis and Rubin, 2002. Biometrics).
- Example: college students that get above a certain GPA are encouraged to apply to grad school.
 - · Compliers wouldn't apply if threshold were slightly higher.
 - Compliers would apply if the threshold were slightly lower.


Compliance Graph

- Compliers would not take the treatment if they had $X_i = c$ and we increased the cutoff by some small amount.
- · These are compliers at the threshold.


Compliance Groups

- Compliers: $D_i(c-e) = 1$ and $D_i(c+e) = 0$
- Always-takers: $D_i(c + e) = D_i(c e) = 1$
- Never-takers: $D_i(c + e) = D_i(c e) = 0$

Compliance Groups

- Compliers: $D_i(c-e) = 1$ and $D_i(c+e) = 0$
- Always-takers: $D_i(c + e) = D_i(c e) = 1$
- Never-takers: $D_i(c + e) = D_i(c e) = 0$

LATE in the Fuzzy RD

We can define an estimator that is in the spirit of IV:

$$\begin{split} \tau_{\text{FRD}} &= \frac{\lim_{x \downarrow c} \mathbb{E}[Y_i \mid X_i = x] - \lim_{x \uparrow c} \mathbb{E}[Y_i \mid X_i = x]}{\lim_{x \downarrow c} \mathbb{E}[D_i \mid X_i = x] - \lim_{x \uparrow c} \mathbb{E}[D_i \mid X_i = x]} \\ &= \frac{\text{effect of threshold on } Y_i}{\text{effect of threshold on } D_i} \end{split}$$

LATE in the Fuzzy RD

We can define an estimator that is in the spirit of IV:

$$\tau_{\text{FRD}} = \frac{\lim_{x \downarrow c} \mathbb{E}[Y_i \mid X_i = x] - \lim_{x \uparrow c} \mathbb{E}[Y_i \mid X_i = x]}{\lim_{x \downarrow c} \mathbb{E}[D_i \mid X_i = x] - \lim_{x \uparrow c} \mathbb{E}[D_i \mid X_i = x]}$$
$$= \frac{\text{effect of threshold on } Y_i}{\text{effect of threshold on } D_i}$$

 Under the FRD assumptions (continuity, consistency, and monotonicity), we can write that the estimator is equal to the effect at the threshold for compliers.

$$\tau_{\mathsf{FRD}} = \mathbb{E}[\tau_i \mid i \text{ is a complier}, \ X_i = c]$$

Proof is very similar to the LATE proof.

LATE in the Fuzzy RD

We can define an estimator that is in the spirit of IV:

$$\begin{split} \tau_{\text{FRD}} &= \frac{\lim_{x \downarrow c} \mathbb{E}[Y_i \mid X_i = x] - \lim_{x \uparrow c} \mathbb{E}[Y_i \mid X_i = x]}{\lim_{x \downarrow c} \mathbb{E}[D_i \mid X_i = x] - \lim_{x \uparrow c} \mathbb{E}[D_i \mid X_i = x]} \\ &= \frac{\text{effect of threshold on } Y_i}{\text{effect of threshold on } D_i} \end{split}$$

 Under the FRD assumptions (continuity, consistency, and monotonicity), we can write that the estimator is equal to the effect at the threshold for compliers.

$$\tau_{\mathsf{FRD}} = \mathbb{E}[\tau_i \mid i \text{ is a complier}, \ X_i = c]$$

- · Proof is very similar to the LATE proof.

Estimation in FRD

· Remember that we had:

$$\tau_{\text{FRD}} = \frac{\lim_{x \downarrow c} \mathbb{E}[Y_i \mid X_i = x] - \lim_{x \uparrow c} \mathbb{E}[Y_i \mid X_i = x]}{\lim_{x \downarrow c} \mathbb{E}[D_i \mid X_i = x] - \lim_{x \uparrow c} \mathbb{E}[D_i \mid X_i = x]}$$

Ratio of SRD estimands: use local linear regression for both.

$$\widehat{ au}_{\mathsf{FRD}} = \frac{\widehat{ au}_{\mathsf{Y},\mathsf{SRD}}}{\widehat{ au}_{D,\mathsf{SRD}}}$$

- Again, CCT provides robust bias correction, bandwidths.
 - · Calonico, Cattaneo, and Titiunik (CCT; Econometrica 2014)

More practical FRD estimation

- The ratio estimator above is equivalent to a TSLS approach.
- Use the same specification as above with the following covariates:

$$V_{i} = \begin{pmatrix} 1 \\ \mathbf{1}\{X_{i} < c\}(X_{i} - c) \\ \mathbf{1}\{X_{i} \ge c\}(X_{i} - c) \end{pmatrix}$$

More practical FRD estimation

- The ratio estimator above is equivalent to a TSLS approach.
- Use the same specification as above with the following covariates:

$$V_{i} = \begin{pmatrix} 1 \\ \mathbf{1}\{X_{i} < c\}(X_{i} - c) \\ \mathbf{1}\{X_{i} \ge c\}(X_{i} - c) \end{pmatrix}$$

· First stage:

$$D_i = \delta_1' V_i + \rho \mathbf{1} \{ X_i \ge c \} + v_i$$

· Second stage:

$$Y_i = \delta_2' V_i + \tau D_i + \eta_i$$

More practical FRD estimation

- The ratio estimator above is equivalent to a TSLS approach.
- Use the same specification as above with the following covariates:

$$V_{i} = \begin{pmatrix} 1 \\ \mathbf{1}\{X_{i} < c\}(X_{i} - c) \\ \mathbf{1}\{X_{i} \ge c\}(X_{i} - c) \end{pmatrix}$$

· First stage:

$$D_i = \delta_1' V_i + \rho \mathbf{1} \{ X_i \ge c \} + v_i$$

· Second stage:

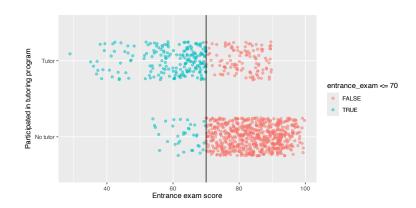
$$Y_i = \delta_2' V_i + \tau D_i + \eta_i$$

 Thus, being above the threshold is treated like an instrument, controlling for trends in X_i.

2/ Example R Codes

Free Tutoring Program and Academic Performance

- · The Setting:
 - · Students take an entrance exam at the beginning & end of a school year.
 - Those who scored below 70 are enrolled in a free tutoring program.

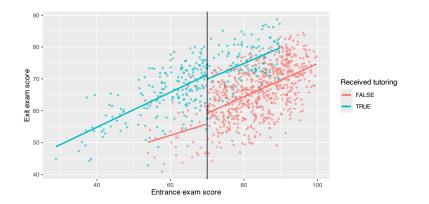

Name	Description
id	student id
<pre>entrance_exam</pre>	student's entrance exam score (out of 100)
exit_exam	student's exit exam score (out of 100)
tutoring	indicator showing if the student received tutoring

```
> pacman::p_load(tidyverse, broom, modelsummary, kableExtra, estimatr, rdrobust)
> tutoring <- read_csv("https://bit.ly/453ymbJ"); head(tutoring, 3)</pre>
# A tibble: 4 × 5
     id entrance_exam tutoring tutoring_text exit_exam
                <dbl> <lgl>
  <dh1>
                                <chr>
                                                  <db1>
                 92.4 FALSE
                                No tutor
                                                   78.1
                 72.8 FALSE
                                No tutor
                                                   58.2
                 53.7 TRUE
                                Tutor
                                                   62.0
```

Examine Compliance Around the Cutoff

```
1
       # Noncompliance around the cutoff
      > tutoring |>
          group_by(tutoring, entrance_exam <= 70) |>
          summarize(count = n()) |>
          group bv(tutoring) |>
 6
          mutate(prop = count / sum(count))
 8
      # A tibble: 4 x 4
9
      # Groups: tutoring [2]
10
       tutoring `entrance_exam <= 70` count prop
       <lg1> <lg1>
11
                                    <int> <dbl>
12
      1 FALSE FALSE
                                      646 0.947
13
      2 FALSE TRUE
                                       36 0.0528
      3 TRUE FALSE
14
                                       116 0.365
15
      4 TRUE
                TRUE
                                       202 0 635
16
17
       # Visualize Noncompliance
18
      > ggplot(tutoring, aes(x = entrance exam, y = tutoring text, color = entrance exam <= 70)) +
19
          geom_point(size = 1.5, alpha = 0.5,
20
                     position = position_jitter(width = 0, height = 0.25, seed = 1234)) +
21
          geom vline(xintercept = 70) +
22
           labs(x = "Entrance exam score", y = "Participated in tutoring program")
```

Visualizing Noncompliance around the Cutoff



Visualizing the Fuzzy Gap

1 2

3

```
> ggplot(tutoring, aes(x = entrance_exam, y = tutoring_text, color = entrance_exam <= 70)) +
    geom_point(size = 1.5, alpha = 0.5,
    position = position_jitter(width = 0, height = 0.25, seed = 1234)) +
    geom_vline(xintercept = 70) +
    labs(x = "Entrance exam score", y = "Participated in tutoring program")</pre>
```


Measuring the Fuzzy Gap

• Center the forcing variable, entrance_score and generate V_i:

If this was a Sharp RD:

```
# Bandwidth ±10
      > sharp_parametric <- lm(exit_exam ~ entrance_centered + tutoring,
 3
                            data = filter(tutoring centered.
                                         entrance_centered >= -10 &
                                           entrance_centered <= 10))
      > tidv(sharp parametric)
      # A tibble: 3 x 5
        term
                        estimate std.error statistic p.value
                                  <dbl> <dbl>
        <chr>
                          <dh1>
                                                     <dh1>
10
      1 (Intercept)
                        59.3
                                  0.503 118. 9.75e-313
11
      2 entrance_centered 0.511 0.0665 7.69 1.17e- 13
12
                      11.5
                                  0.744 15.4 1.77e- 42
      3 tutoringTRUE
```

- tutoringTRUE estimate measures the size of the jump at the cutoff.
 - There would still be confounding as we have noncompliance.

Measuring the Fuzzy Gap Correctly

• Use estimatr::ivrobust() for TSLS estimation:

```
> model_fuzzy <- iv_robust(</pre>
           exit_exam ~ entrance_cnt_b70 + entrance_cnt_a70 + tutoring
 3
             entrance cnt b70 + entrance cnt a70 + below cutoff.
           data = filter(tutoring centered, entrance centered >= -10 & entrance centered <= 10)
 5
       > tidv(model fuzzv, conf.int = F)
                     term estimate std.error statistic p.value df outcome
9
              (Intercept) 59.9731656 1.1165541 53.712726 9.984384e-185 399 exit exam
10
       2 entrance cnt b70 0.3773301 0.1855677 2.033383 4.267520e-02 399 exit exam
11
       3 entrance cnt a70 0.4715826 0.1344630 3.507156 5.044279e-04 399 exit exam
12
             tutoringTRUE 9.6265535 1.9424192 4.955961 1.065759e-06 399 exit_exam
```

Measuring the Fuzzy Gap Correctly

• Nonparametric estimation for FRD with rdrobust():

pe mserd il Triangular sethod MC2 vr of Os. 238 762 Number of Obs. 179 347 est. (p) 1 1 1 est. (p) 1 1 1 bias (a) 2 2 t. (t. (h) 12.961 12.961 as (b) 19.579 19.579 Nub) 0 6.662 6.662	ummary(frd)					kernel = "triangular"		
rr of Obs. 1880 pe mserd 1 Triangular 1 rethod HC2 rest. (p) 1 1 10 11 12.961 12.961 23.8 (76.2 Number of Obs. 170 347 rest. (p) 1 1 15.01 16.01 17.02 18.02 18.03								
pe mserd 1 Triangular 1 Triangular 1 HC2 Number of Obs. 238 762 Number of Obs. 170 347 est. (p) 1 1 1 bias (q) 2 2 tt. (h) 12.961 12.961 as (b) 19.579 19.579 h/b) 0.662 0.662 eo Obs. 238 762 stage estimates.	zy RD estima	tes using l	ocal polyr	omial regre	ession.			
pe mserd 1 Triangular 1 Triangular 1 HC2 Number of Obs. 238 762 Number of Obs. 170 347 est. (p) 1 1 1 bias (q) 2 2 tt. (h) 12.961 12.961 as (b) 19.579 19.579 h/b) 0.662 0.662 eo Obs. 238 762 stage estimates.	per of Obs.		1000					
il Triangular bethod HC2 or of Obs. 238 762 Number of Obs. 170 347 rest. (p) 1 1 1 bias (q) 2 2 ct. (b) 12.961 12.961 as (b) 19.579 19.579 h/b) 6.662 6.662 restimates. 238 762 Wethod Coef. Std. Err. z P> z [95% C.I.] Wethod 1 -0.788 0.073 -9.672 0.000 [-0.851 , -0.565] Robust8.350 0.000 [-0.851 , -0.565]	type		mserd					
ru of Obs. 238 762 Number of Obs. 170 347 est. (p) 1 1 1 bias (q) 2 2 tt. (h) 12.961 12.961 as (b) 19.579 19.579 h/b) 6.662 6.662 e Obs. 238 762 stage estimates.	nel	T	riangular					
Number of Obs. 170 347 rest. (p) 1 1 bias (q) 2 2 t. (h) 12.961 12.961 as (b) 19.579 19.579 h/b) 6.662 6.662 c 0bs. 238 762 stage estimates. Method Coef. Std. Err. z P> z [95% C.I.]	method		HC2					
rest. (p) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ner of Ohs		238	76	52			
rest. (p) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		bs.						
bias (a) 2 2 tit. (ft) 12.961 as (b) 19.579 19.579 h/b/) 0.662 0.662 ee Obs. 238 762 stage estimates. Method Coef. Std. Err. z P> z [95% C.I.]	er est. (p)		1		1			
11. (h) 12.961 12.961 12.961 13.961	er bias (g)							
as (b) 19.579 19.579 h/h/b) 0.662 0.662 se Obs. 238 762 stage estimates. Method Coef. Std. Err. z P> z [95% C.I.]	est. (h)		12.961	12.9	51			
wentional -0.788 0.073 -9.672 0.000 [-0.851], -0.565] Robust3.550 0.000 [-0.953], -0.565]	oias (b)		19.579	19.5	79			
wentional -0.788 0.073 -9.672 0.000 [-0.851], -0.565] Robust3.550 0.000 [-0.953], -0.565]	(h/b)		0.662	0.6	52			
Method Coef. Std. Err. z P- z [95% C.I.] ventional -0.708 0.073 -9.672 0.000 [-0.851], -0.565] Robust8.350 0.000 [-0.309], -0.563]								
ventional -0.708 0.073 -9.672 0.000 [-0.851 , -0.565] Robust8.350 0.000 [-0.909 , -0.563]	que Obs.		238	76				
Robust8.350 0.000 [-0.909 , -0.563]	que Obs. st-stage est	Coef. S	td. Err.	z	52 P> z	[95% C.I.]		
	gue Obs. st-stage est: Method	Coef. S	td. Err.	z	P> z	[95% C.I.]		
ment effect estimates. Method Coef. Std. Err. z P> z [95% C.I.]	Method noventional Robust	Coef. S	0.073	z -9.672 -8.350	P> z 0.000 0.000	[95% C.I.] [-0.851 , -0.565] [-0.909 , -0.563]	:	
rventional 9.685 1.957 4.948 0.000 [5.849 , 13.522] Robust 4.127 0.000 [5.075 , 14.257]	Method onventional Robust Method Method	Coef. S -0.708 - c estimates	0.073 	-9.672 -8.350	P> z 0.000 0.000 P> z	[95% C.I.]	=	

Measuring the Fuzzy Gap Correctly

- Nonparametric estimation for FRD with rdrobust():
- Report the "robust" estimates: $\widehat{\tau}_{\rm BC}$ with $\widehat{\sigma}_{\rm robust}^2$

```
1 > cbind(frd$coef, frd$se)
2
3
4 Conventional 9.685196 1.957433
5 Bias-Corrected 9.666085 1.957433
6 Robust 9.666085 2.342204
```

On to the Presentations & Discussions!

Contact Information: jaewon.yoo@iss.nthu.edu.tw https://j1yoo4.github.io/

Appendix

Kink RD

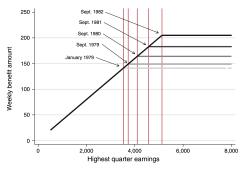


FIGURE 2. LOUISIANA: SCHEDULE OF UI WEEKLY BENEFIT AMOUNT, JAN. 1979–DEC. 1983

Source: https://www.aeaweb.org/articles?id=10.1257/pol.20130248

Also see: https://blogs.worldbank.org/en/impactevaluations/tools-trade-regression-kink-design

- Sharp Kink RD: discontinuities in the first derivatives rather than levels.
 - Unemployment benefits as a function of prior earnings.
 - · If there is a cap on benefits, there's a kink in the assignment.
 - Look for changes in the slope of $\mathbb{E}[Y_i \mid X_i = x]$ at threshold.
 - · Estimation Similar, but better to use local quadratic regression.